P/CAF rescues the Bhlhe40-mediated repression of MyoD transactivation.
نویسندگان
چکیده
Previously, we found that MRFs (myogenic regulatory factors) regulated the expression of PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator 1alpha) by targeting a short region, from nt -49 to +2 adjacent to the transcription initiation site, that contained two E-boxes. However, only the E2-box had significant affinity for MRFs, and the E1-box was predicted to be the target of Bhlhe40 (basic helix-loop-helix family, member e40, also known as Stra13, Bhlhb2, DEC1 and Sharp2), a transcriptional repressor implicated in the regulation of several physiological processes. In the present study, by using EMSA (electrophoresis mobility-shift assay), we confirmed that Bhlhe40 targeted the E1-box and formed a complex with the basic helix-loop-helix transcription factor MyoD (myogenic differentiation factor D) on the PGC-1alpha core promoter. We demonstrate that Bhlhe40 binds to the promoters of PGC-1alpha and myogenic genes in vivo and that Bhlhe40 represses the MyoD-mediated transactivation of these promoters. Furthermore, we found that this repression could be relieved by P/CAF (p300/CBP-associated factor) in a dose-dependent manner, but not by CBP [CREB (cAMP-response-element-binding protein)-binding protein]. Bhlhe40 interacted with P/CAF and this interaction disrupted the interaction between P/CAF and MyoD. These results suggest that Bhlhe40 functions as a repressor of MyoD by binding to adjacent E-boxes and sequestering P/CAF from MyoD.
منابع مشابه
Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation.
Dermo-1 is a multifunctional basic helix-loop-helix (bHLH) transcription factor that has been shown to be a potent negative regulator for gene transcription and apoptosis. To understand the molecular mechanisms that mediate the function of Dermo-1, we generated a series of Dermo-1 mutants and used a MyoD-mediated transcriptional activation model to characterize the roles of its N-terminal, bHLH...
متن کاملThe nuclear receptor corepressor N-CoR regulates differentiation: N-CoR directly interacts with MyoD.
Classical ligand-activated nuclear receptors (e.g. thyroid hormone receptor, retinoic acid receptor), orphan nuclear receptors (e.g. Rev-erbAalpha/beta), Mad/Max bHLH (basic helix loop helix)-LZ proteins, and oncoproteins, PLZF and LAZ3/BCL6, bind DNA and silence transcription by recruiting a repressor complex that contains N-CoR (nuclear receptor corepressor)/SMRT (silencing mediator of retino...
متن کاملp57(Kip2) stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts.
We show that expression of p57(Kip2), a potent tight-binding inhibitor of several G(1) cyclin-cyclin-dependent kinase (Cdk) complexes, increases markedly during C2C12 myoblast differentiation. We examined the effect of p57(Kip2) on the activity of the transcription factor MyoD. In transient transfection assays, transcriptional transactivation of the mouse muscle creatine kinase promoter by MyoD...
متن کاملRepression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells.
The human papillomavirus (HPV) E2 protein is an important regulator of viral E6 and E7 gene expression. E2 can repress the viral promoter for E6 and E7 expression as well as block progression of the cell cycle in cancer cells harboring the DNA of "high-risk" HPV types. Although the phenomenon of E2-mediated growth arrest of HeLa cells and other HPV-positive cancer cells has been well documented...
متن کاملThree unrelated viral transforming proteins (vIRF, EBNA2, and E1A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors.
Kaposi sarcoma-associated herpesvirus vIRF is a viral transcription factor that inhibits interferon signaling and transforms NIH 3T3 cells, but does not bind interferon-stimulated response element (ISRE) DNA sequences. Here we show that induction of the MYC protooncogene is required for cell transformation by vIRF, and that vIRF increases MYC transcription up to 15-fold through specific promote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 422 2 شماره
صفحات -
تاریخ انتشار 2009